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CHAPTER 5 -- NEWTON'S LAWS

QUESTION SOLUTIONS

5.1)   A car moves at a constant 30 m/s.  Is it accelerating?  If so, must there be an
applied net force to maintain this motion?  Explain.

Solution:  This is a tricky question.  Most people see the words constant 30 m/s and think,
constant velocity implies no acceleration which means no force.  The problem is that
velocity is a vector.  There is more than one way to change a velocity vector.  Indeed, the
magnitude of the velocity vector isn't changing (it's constant), but its direction could be
changing.  Generally referred to as a centripetal acceleration, it is associated with a force
that doesn't speed up or slow down a body but, rather, changes the direction of the body's
motion.  This requires an applied net force (N.F.L.--objects in motion tend to stay in
motion in a straight line unless impinged upon by an external force).  In short, the car may
or may not be accelerating.  If it is moving along a curved path, there must be a net force
motivating that motion.

5.2)   Two objects of different mass will have different
weights (that is, they will feel different gravitational forces),
yet if air friction is ignored and you drop both from the same
height, they will accelerate due to gravity at the same rate.
How can this be?

Solution:  Due to a quirk in the nature of things, if a block has
twice the gravitational mass (i.e., twice the willingness to be attracted to another body . . .
like the earth) as a feather, it will also have twice the inertial mass (i.e., twice the
resistance to changing its motion) as does the feather.  The greater weight (gravitational
force) is counteracted by the body's greater resistance to changing its motion (inertia), and
the net effect is that all objects in a frictionless situation will fall at the same rate.

5.3)  A solid copper ball and a hollow copper ball of the same radius are
found in space.  Both are weightless.  Without cutting them open, how
can you determine which is which?

Solution:  Because the two objects are both made of copper, the hollow ball will
be less massive.  Being less massive, it will have less resistance to changing its motion.
Therefore, if you are in space where the only force applied to either ball comes from you,
the ball that is easier to motivate out of a stationary state will be the hollow, less massive
ball.  (This is like asking, What will be harder to move in space, a 16 pound shot-put or a
softball-size sphere made of styrofoam?)

5.4)  A body is accelerated by some net force.  If the force is halved, how will the
velocity-change ∆v alter?  If the mass is halved instead, how will the velocity-
change ∆v alter?

Solution:  Velocity change with time is acceleration, so altering the velocity change (as the
question states) really suggests that there is a change of acceleration.  According to
Newton's Second Law, net force and acceleration are proportional (Fnet = ma), so if the

force is halved with the mass kept constant, the acceleration will also be halved.  On the
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other hand, if the force is kept constant and the mass is halved, the acceleration must
double (again, think about Fnet = ma).

5.5)  It is easier to keep a crate moving across a frictional floor than it is to get it
going in the first place.  Why?  That is, aside from the relative motion, what is the
fundamental difference between the two cases?

Solution:  You are looking at the difference between kinetic (sliding) friction and static
friction.  Static friction, due to the fact that there is no motion involved, is a situation in
which the atomic structures of the two interacting bodies can meld more completely than
would be the case with sliding friction.  As that melding must be sheared to instigate
motion, it is easier to keep a crate going (less melding, hence, less shearing needed) than
to get it going in the first place.

5.6)  A heavy box attached to a parachute will reach the ground faster than a light
box of equal size attached to an identical parachute.  Why?

Solution:  As a parachute falls, air collides with the underside of the plummetting chute.
This produces an upward, resistive force on the chute.  With essentially no initial velocity
at first, the dominating force in freefall is gravity.  But as the velocity increases, this air-
born resistive force increases (remember, it's opposite the direction of gravity) diminishing
the net force on the chute and reducing its acceleration.  When the force of gravity exactly
counteracts this resistive force, the body stops accelerating and proceeds to the ground at
what is called terminal velocity.  To reach terminal velocity, a heavy box must be moving
quite fast before air friction can counteract its relatively large weight.  As such, a heavier
box will have a higher terminal velocity associated with it and, as a consequence, will
reach the ground faster  than will a lighter box.

5.7)  A truck is ten times more
massive and moves with twice
the speed of a small car.  The two
collide.  During the collision,
which will experience the greater
force? Which will experience the greater acceleration?

Solution:  This is an old standby.  According to Newton's Third Law, for every force in the
universe there must be an equal and opposite reaction force.  (Minor point: The word
reaction is misleading as, in fact, the two forces happen at the same time . . . versus one
happening and the other following in reaction).  The idea is that one object can't exert a
force on another object without the other object exerting the same force back on the first.
It's just the way the universe works.  What this means is that whatever force magnitude
the truck experiences, the car must experience the same force magnitude.  An object's
acceleration is more complicated as it is related to both the magnitude of the net force
(again, this is the same for both in this case) and the body's mass (remember, Fnet = ma).

In this case, the car (with its lesser mass) will experience a greater acceleration(i.e., it will
change velocity more radically) than will the more massive truck with its lesser
acceleration . . . even though the product ma will be the same for both.

5.8)  A man stands wedged between two identical crates on a
frictionless sheet of ice.  Is there any way he can make the
acceleration of one of the blocks greater than that of the other?
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Solution:  If the man pushes one block, his interaction with that block will force him
toward the other block.  That is, if he pushes the right block to the right, it will push on
him to the left with an equal force.  Given the fact that he is jammed between the two
boxes, that force will be transferred through him to the block on the left.  As the two
blocks have the same mass, the equal forces being applied to each will provide the same
acceleration no matter what.

5.9)  Drop a rock from the mast of a moving boat.  Will it hit the deck  a.) in front
of the mast, b.) next to the mast, or c.) behind the mast?  Justify your response in
terms of the force(s) acting on the rock.

Solution:  The only force acting on the rock, ignoring frictional effects (we can effectively
do this because the relative distance traveled is so small), is gravity.  If the rock has an
initial velocity in the horizontal (it does as it is initially traveling with the boat), it will
continue to move with that horizontal velocity until it hits the deck.  As the horizontal
velocity of the rock and mast will be the same throughout, the rock should hit the deck
next to the mast . . . and b is the answer.

5.10)  A kid steps off a footstool and begins to freefall under the influence of
gravity.  That is, the earth applies a gravitational force to the kid.  For this
situation, what is the "reaction force" alluded to in Newton's Third Law?

Solution:  In the first place, the term reaction force is a misnomer.  The "action" and
"reaction" forces really act at the same time.  Ignoring this unfortunate play on words, if
the earth exerts a gravitational force on the kid, the kid must exert an EQUAL AND
OPPOSITE gravitational force on the earth.  The reason the kid's response to the force is
so noticeable (after all, the little devil does seem to pick up speed fairly quickly as he/she
moves toward the earth) is because the child's mass is small in comparison to that of the
earth.  Remember, Fnet = ma.  For a given force, if m is small, a will be relatively large . . .

and vice versa.

5.11)  A force F1 stops a car.  In terms of F1, how large must a new force be to stop
the same car under the same circumstance but in half the distance?  In half the
time?

Solution:  This is tricky.  It seems to make sense that to stop the car in half the time, the
car has to slow down twice as fast.  In fact, the relationship between acceleration and time
is more easily seen by considering a car at rest that accelerates through some distance.  If
you decide to cover the distance in half the time, how does the acceleration have to
change?  The relationship ∆ x = .5at2 suggests that travel distance is dependent upon the
square of the time (yes, this is for a somewhat different problem--a car picking up speed
instead of one slowing down--but the concept is the same).  In other words, halving the
time requires the acceleration to increase by a factor of four if the distance is to stay the
same.  Given the fact that acceleration is proportional to force, the force in this case must
be F = 4F1.   On the other hand, stopping the car in half the distance really does mean

that the car has to slow down twice as fast as it originally did.  The math justifies this
claim.  Specifically, vstop

2 = vo
2+ 2a ∆ x with vstop = 0 and a being negative means that a =

vo
2/2 ∆ x (note that the sign of the acceleration term has been unembedded leaving a to

denote a magnitude only).  Therefore, if ∆ x halves, a doubles and the force we are looking
for becomes F = 2F1.
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5.12)  A horse pulls on a cart.  According to Newton's
Third Law, the cart must exert an equal and opposite
reaction force back on the horse.  That is, if the horse
pulls the cart with 50 newtons of force, the cart must
pull back on the horse with 50 newtons of force.  As
this so-called action/reaction pair always adds to zero, it appears as though we are
suggesting that the cart will never accelerate.  This obviously can't be the case, so
what's the problem here?

Solution:  I first saw this problem in Hewitt's book Conceptual Physics.  It is a great
example of getting Newton's Laws confused.  There is, indeed, an action/reaction pairing
between the horse and the cart, but that isn't all there is.  For motion, there must be a
force between the horse's hooves and the street (in what direction is that force? . . . it had
better be in the direction the horse is trying to go--if this isn't clear, ask your teacher
about it).  In other words, if you are going to look at the forces acting on a system, you
have to include all the forces.

5.13)  Assuming friction is negligible, which will reach the bottom of an incline
first, a large box or a small box?  Explain.

Solution:  In theory, if the incline is frictionless, both would hit the bottom at the same
time.  For a frictional situation, though, with the big box weighing more, kinetic friction
will be greater on that box than on the smaller box so the smaller box should get to the
bottom first.

5.14)  An object falls from rest into a syrupy
fluid.  What does its net force versus time graph
look like?  Its velocity versus time graph?  Its
position versus time graph?

Solution:  The force versus time graph will look
the same as the acceleration versus time graph.
Knowing that, we can determine the general
form of the velocity versus time graph and
position versus time graph using what we know
about the relationship between those quantities.
Note that if the object had fallen in air, it would
have begun with an acceleration of 9.8 m/s2 only
to have its acceleration decrease as its velocity
and, hence, frictional effects increased.  At some
point, the frictional force would exactly match
gravity, the acceleration would cease, and the
object would move at a constant terminal
velocity for the rest of its trip.  In a syrupy fluid,
the same will happen except it will hit terminal
velocity more quickly.  The graphs are to the
right.  Note that the force (acceleration) versus
time graph is just the derivative (i.e., slope) of
the velocity versus time graph which is, in turn, the slope of the position versus time graph.
Assuming POSITIVE is associated with UPWARD MOTION, everything is negative.
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Note:  In doing this solution, I started with the easiest motion to visualize, at least for me.
That was the velocity versus time graph.  I figured the velocity started from rest, increased
at some non-linear rate until it leveled off at terminal velocity, then stayed there for the
rest of the motion.  From that graph, I deduced the other two graphs.

5.15)  Assuming all masses
are the same size and the
pulleys are ideal (i.e.,
massless and frictionless),
which of the three scales in
the figure will register the
greatest force?

Solution:  As bizarre as this
might seem, they will all
register the same force.
The scale in the single
pulley system (system A) on
the left is essentially
registering the weight of m
(all an ideal pulley does is
re-direct the line of the
tension), so it and the
ceiling hung scale (system
B)  will read the same number.  The one that usually confuses people is the double pulley
situation (system C) on the right.  Reconsider, though, system A.  To keep the hanging
mass from accelerating downward, the wall must apply a force that translates to the scale
and mass via tension.  That force pulls the scale to the left.  Now consider system C.  Its
right side looks exactly like the system A (that is, there is a scale, a pulley, and a hanging
mass).  For the right side of system C to be in equilibrium, there must be a force applied to
its scale that is the same size as the force applied to the scale in system A.  Where does
that force come from in system C?  It comes from the hanging mass on the left side of the
table.  What's important to realize is that because the two situations both depict
equilibrium, the force on the left side of the scale in both cases must be the same.  And if
that is so, both scales must measure the same value.  Put a little differently, it doesn't
matter how the force required for equilibrium is generated, if the hanging mass on the
right side of each table is to sit in equilibrium, the same force must be applied to the left
side of the scale no matter where that force comes from.  In the one case, the wall provides
the force.  In the other case, a second hanging mass provides the force.  In all cases,
though, the scales will read the same value.

5.16)  A ball is dropped from rest a distance h units above a bathroom scale.
When it hits, the scale measures an average force of 50 newtons.  The ball is then
dropped from a distance 2h units above the scale.  Will the scale read 100
newtons, less than 100 newtons, or more than 100 newtons?  Explain.

Solution:  It turns out that it will read less than 100 newtons.  The key here is in
determining the velocity of the ball as it strikes the scale so that we can determine the
acceleration that must exist if the ball is to come to rest (remember, force and acceleration
are proportional).  If we assume the time of collision is the same for both situations (a
dubious assumption, but we have little else to go on here so we have to make it), and if we
assume the acceleration is approximately constant throughout the slowdown (another
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dubious assumption, but what the hell), we can use kinematics to write Favg = maavg =

m(vd - vs)/tcollision, where vd is the velocity of the ball when the scale is fully depressed

(this value will be zero at that point) and vs is the velocity of the ball just as it hits the

scale.  With vd = 0, this becomes Favg = -mvs/t (in this case, we can ignore the negative

sign--we are only interested in the magnitude of the force).  Also, we know that this
number will numerically equal 50 newtons when the ball falls from a height h, so we can
re-write our expression (ignoring the negative sign) as 50 = mvs/t.  If we can determine a

relationship between the before collision velocity vs for both cases (after all, according to

our expression, vs is proportional to the average force), we can determine the relationship

between the average force generated by the two falls.  For the fall of height h, this

expression is vs
2 = vo

2 + 2(-g)(-h), with vo being the initial fall velocity (this is zero).  That

relationship yields vs = (2gh)1/2.  Using this same expression for a height of 2h yields v2h

= (2g(2h))1/2= (2)1/2vs.  In other words, v2h = (2)1/2vs.  As the forces are proportional to

these velocities, we can write Favg,2h = (2)1/2Favg,h = (2)1/2(50 nts) = 70 nts.  The new

force will be less than 100 newtons.

5.17)  A massive object is placed on a frictionless table.  It takes 2 newtons of force
to accelerate it at .5 m/s2.  The object is taken into space where it is weightless.
The force required to accelerate the object at .5 m/s2 will be (a) less than, (b) equal
to, or (c) more than 2 newtons.

Solution:  On a frictionless table, all your force is doing as it accelerates the object is
overcoming the object's inertia.  In gravitationless space, the same is the case.  The two
forces should, therefore, be the same.

5.18)  Magic Mountain is an amusement park in Southern California that is
known for its giant roller coaster rides.  One of the rides, Superman, consists of a
cart that is accelerated along a horizontal stretch of track (via magnetic induction,
no less) to somewhere around 100 mph in less than four seconds.  The cart's path
then curves into a vertical climb up an enormously high tower.  At the top it comes
to rest whereupon it proceeds to freefall several hundred feet back down the
vertical section of the track and out the curve onto the horizontal section where it
finally comes to rest.  The drop from the top is billed as pure freefall.  In theory, if
you took this ride and released a dime at the top (i.e., just as you began to freefall
back down the track), the dime should sit motionless in front of you as both you
and it gravitationally accelerated back toward Earth.  For two reasons (one
obvious and one not so obvious), DOING THIS WOULD BE A BAD IDEA--A
REALLY, REALLY BAD IDEA.  What is the obvious problem and, for the
hotshots, what is the not so obvious problem?

Solution:  If you go along with the idea that you don't want to kill someone, then you don't
want to do anything that might allow the freely falling dime to come into contact with
someone's skull.  If you and the dime were accelerating at the same rate, it would still be
in front of you when you got to the bottom and you could grab it before pulling out onto
the horizontal stretch.  The "obvious problem" is that that won't happen.  The dime, being
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relatively light, will hit its terminal velocity fairly quickly and, as a consequence, will not
keep up with you as you accelerate downward (it will appear to accelerate up and away
from you).  If people happen to be walking under the ride, they could get clobbered by the
falling object (amusement parks get around this problem by closing off the area under
such rides).  The "not so obvious problem" is associated with what is called Bernoulli's
effect.  As the dime falls, the air velocity on one side of the dime will be greater than on
the other side due to its spin.  As a consequence, the variation will cause a pressure
difference between the two sides.  The high pressure side will push the dime motivating it
to veer off away from you to the left or the right.  If conditions are just right (or just
wrong, depending upon how you look at it), the dime could conceivably sail out beyond the
restricted area under the ride and actually hit someone.  In short, if you must observe this
freefall phenomenon, use something relatively massive (maybe a baseball?) whose
terminal velocity won't be reached so quickly and whose mass won't allow Bernoulli's
effect to push it around so easily.

5.19)  A pendulum in Los Angeles (22o

latitude) does not hang directly toward the
center of the earth.  Explain why not.

Solution:  A simple pendulum is a string with a
mass attached to one end.  Think about holding
such a pendulum while standing on the edge of
a rotating merry go round.  From your
perspective, what does the pendulum bob
appear to do?   It seems to push out away from
the center (actually, it's really trying to follow
straight-line motion--your holding it, via the
string, applies a force that pulls it into circular
motion . . . hence the feeling that it pushes you
outward).  If the earth were stationary, a
pendulum would be gravitationally attracted to the center of the earth and the string
would orient itself between the pendulum's contact point (i.e., where the pendulum is
attached to, say, the ceiling) and the earth's center.  The problem is that the earth is
rotating.  This means that along with the tension force required to counteract gravity,
there must be a tension component that pulls the pendulum bob into circular motion.  The
consequence is that the line of the pendulum will not be toward the earth's center but will
be off a bit toward the equator (see sketch).

5.20)  A block on a frictional incline plane compresses an ideal spring by a
distance d.  The spring is released firing the block up the incline.  Old George
maintains that the block will go up the incline and, upon returning, will
recompress the spring by some distance less than d.  Why, in the real world, might
he think that, and what additional, exotic thing might happen that could prove
him wrong?

Solution:  If the incline had been frictionless, the magnitude of the block's velocity as it
left the spring would, due to the symmetry of the situation, have been the same as the
magnitude of the velocity when it returned.  If that had been the case, one would expect
that the spring would again be depressed the same distance d .  With friction in the
picture, the block would not rise as high on the incline as otherwise would have been the
case, and would not be moving as fast when it got back down to the spring.  In that
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situation, you would expect the spring to be depressed a distance less than d.  The exotic
twist comes in the fact that kinetic frictional force is not as strong as static frictional force,
so it is possible that when the block gets to the top of its motion, the gravitational
component will not be large enough to overcome the static frictional force being applied
and the block will simply stay there without returning down the incline at all.  Tricky, eh?

5.21)  A mass m is attached to one end of a string.  The other end of the string is
attached to the ceiling of an elevator.  The elevator proceeds from the first floor to
the sixtieth floor.  What might you expect the graph of the string tension to look
like, relative to the force mg, as the motion proceeds?  Being the big-hearted guy
that I am, I'll give you a hint: the tension IS mg before the elevator begins to
move.  Justify each part of your graph.

Solution:  The tension in a string hanging from a ceiling will equal the weight of the
mass attached to it as long as the system isn't accelerating.  If there is acceleration, the
tension will be other than mg.  So, the elevator accelerates upward at a constant rate
(I'm assuming it's constant) to start.  The tension must not only support the weight of the
pendulum bob, it must also increase the bob's velocity.  In other words, the tension
associated with that initial acceleration will be greater than mg.  When the elevator
reaches cruising speed, assuming it doesn't accelerate throughout the ascent, the velocity
change will be zero and, hence, so will the acceleration.  In that case (i.e., for constant
velocity), the tension in the line will simply be mg (note that this is a consequence of
N.F.L.: objects in motion stay in motion with a constant velocity unless impinged upon by
a net external force--in this case, gravity and
tension are external forces that add to zero so
the net force on the bob is zero and the bob
proceeds with constant velocity).  When the
elevator approaches the end, it must
accelerate negatively, slowing the body down
(if you've ever been in an elevator that is
doing this, you know that you end up feeling
light on your feet--the same happens here).
The tension doesn't have to support the full
weight of the pendulum bob because the bob's
velocity is decreasing (it's the opposite of having to increase the tension to counter both
gravity and an increase in velocity).  The graph depicts all of this.

5.22)  A block on a horizontal frictional surface is pulled by a rope oriented at
some non-zero angle, relative to the horizontal.  Is there an optimal angle at
which the block's acceleration will be a maximum and, if so, how would you go
about theoretically determining that angle?

Solution:  There are two forces to deal with here.  The easier one to see is the force
generated by the rope (I'll call this F).  It will have two components, one in the vertical
and one in the horizontal.  The second is friction.  The acceleration of the block will
depend upon the vector sum (actually, because they are in opposite directions, it'll be a
subtraction) of the frictional force and the horizontal component of F.  The frictional force
depends upon the normal force which, in turn, depends upon the vertical component of F.
The relationships can be seen in the sketches labeled situation I and situation II.
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It should be obvious from looking at the sketches that with a big angle comes a little
normal force (the large vertical component of F means that the surface providing the
normal force will not have to muster much force to counteract mg), a small frictional force
(N will be small, so the coefficient of kinetic friction times N will be small), and a small
horizontal component of F.  The vector sum of friction and the horizontal component of F
(this will be f - F cos θ ) will be small as the two are about the same size.  As a
consequence, the acceleration will be relatively small.  Likewise, with a small angle comes
a large normal force, a large frictional force, and a large horizontal component of F.  The
vector sum of friction and the horizontal component of F  will, again, be small as the two
will be about the same size.  As a consequence, the acceleration will be relatively small.
There is, indeed, an angle somewhere between the two situations in which the normal
force isn't too big so the frictional force isn't too big, but the horizontal component of F is
largish.  In that case, the vector sum of the horizontal vectors will be relatively large as
will the acceleration.  How do you get that angle?  Use N.S.L. to generate an expression
for F as a function of θ , then maximize that function (i.e., note that the slope of the F vs θ
graph will be zero at a maximum, take the derivative of F to determine its slope function,
set that function equal to zero to hone in on its maximum, then solve for
the angle that satisfies that situation).

5.23)  You want to set up the following device:  Place a string over a
pulley, then attach unequal masses to each end (this device is
called an Atwood Machine--typically, the question asked for such a
device is what will the acceleration of the system be if allowed to freefall?).
Unfortunately, you are symmetrically challenged.  Every time you thread the
string over the pulley (i.e., before you get the masses attached), you put more
string on one side of the pulley than on the other side.  That means that when you
release the string to pick up the masses, the string free-wheels over the pulley and
ends up on the ground (really irritating).
     You may be symmetrically challenged, but you aren't stupid.  Realizing that
you aren't going to be able to make the miserable thing work, you change the
problem to what is the string's freefall acceleration as it free-wheels over the
pulley?  Without answering the question itself, answer the following:  Will the
acceleration be constant (i.e., could you use kinematics on this if you were clever?)
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and, if not, what parameters (i.e., height above the ground, initial velocity, what?)
will determine what the string's acceleration is at a given instant?

Solution:  What determines the acceleration will be the disparity in weight between the
string on one side of the pulley and that on the other side.  As that disparity will change
with time (i.e., as more string slides over the pulley, more weight will be on the down
side), the acceleration would not be constant and kinematics would not be an acceptable
option.

5.24)  A net force of 2 newtons is applied to a mass.  The speed of the object doesn't
change.  How can this be?

Solution:  If the force is perpendicular to
the direction of motion, the magnitude of
the velocity won't change but the
direction will.  Evidently, that is what is
happening here.

5.25)  The graph shown depicts an
object's change of velocity with time.
What might the unknown function be?

Solution:  Change of velocity with time is
acceleration, so the known function
mimics that of acceleration.  According to
N.S.L., Fnet = ma.  As the known and

unknown functions appear to be proportional to one another, I suspect the unknown
function is that of the net force on the object.

5.26)  John was big, but he wasn't too bright.  He needed to transport several 60
pound cubical microwave cookers (each was enameled plastic with no feet) across
town in his car, but his beat up, rusty hulk of a vehicle was just a little too small.
To accommodate the last two, he put them side by side on the roof.  Once there, he
urged the car forward only to find that they both broke loose when stopping.  To
remedy the problem, he put one on top of the other thereby doubling the normal
force thereby doubling the frictional force.  What problem is he
likely to run into?

Solution:  He is only doubling the normal force on the bottom
microwave.  Assuming the car's surface isn't slick (it was rusty), the top
one will not enjoy the extra friction.

5.27)  Three identical springs are attached at the ceiling.  A bar of mass m is
hooked to the group.  If the new system's equilibrium position is d units below the
springs' unstretched lengths, what must the spring constant be for each spring?

Solution:  Summing the forces at the new equilibrium position yields 3kd - mg = ma = 0
(i.e., a = 0 at equilibrium).  Solving yields a spring constant of  k = mg/(3d).
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Note: The force N      is found on both 
          mass B and mass A.  Why?  Be-
          cause the SAME LABEL must be 
          used for each action/reaction pair.

bl B

mass A

mass B

mass 
   C

frictionless

frictional

Note:  As it is connected to block
            A, the pulley will provide
            a                                 force
            downward on that block.

push me, pull you

PROBLEM  SOLUTIONS

5.28)  Drawing a free body diagram for the force of EACH BODY in each
sketch:

a.)

b.)

Note 1:  There are two action/reaction force pairs between masses A and B:
the normal force Nbl B that A applies to B and vice versa, and the frictional force f
between the two.  Be sure you understand what is going on here!

Note 2:  Notice that the magnitude of the tension force T on mass C and
mass B is the same.
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   mass

pulley C
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f.b.d. for
  pulley C

f.b.d. for
  pulley A

f.b.d. for
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Note 3:  The pulley mount on mass A applies a downward and to the left
force Fpulley on mass A.  As we are interested in ALL the forces acting on each
mass, that force has to be included.

c.)

d.)
Note 1:  All
the pulleys
do here is re-
direct the
line of the
tension T.

Note 2:  The
pin that
holds each
pulley in
place must
exert a force
that
effectively
keeps its
pulley from
flying off into
space.

Note 3:
There is a
force acting at the pin of each pulley to keep the pulleys from falling through the
table.
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5.29)  According to Newton's Third Law:

a.)  The reaction to the force the floor applies to you is the force you
apply to the floor.

b.)  The reaction to the force a string applies to a weight is the force the
weight applies to the string.

c.)  The reaction to the force a car applies to a tree is the force the tree
applies to the car.

d.)  The reaction to the force the earth applies to the moon is the force
the moon applies to the earth.

5.30)
a.)  A free body diagram for the situation before your friend applies his

force (Part B) is shown below.  Making ax into a MAGNITUDE by
unembedding the negative sign, N.S.L. yields:

  ∑ Fx :

- fk= - max
          ⇒     - (12 nt) = - (30 kg) a
              ⇒                a = .4 m/s2.

Note 1:  Why make ax into a magnitude by
unembedding the negative sign?  In certain kinds of problems, doing so will make
life easier.  Get used to it.

Note 2:  In the next question, you are going to need µ k.  From the f.b.d.

above, N = mg = (30 kg)(9.8 m/s2) = 294 nts.  As fk = µ kN, we can write µ k = fk/N

= (12 nt)/(294 nt) = .04.

b.)  With the additional force applied by
your friend, the free body diagram looks like
the one shown to the right (note that N has
changed).  To determine N:

  
∑ Fy :

N + F sin 40o - mg = - may       (= 0 as ay = 0)

⇒      N = -F sin 40o + mg
           = - (60 nt) sin 40o + (30 kg)(9.8 m/s2)
           = 255 nts.
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    ∑ Fx :

         - µ kN + F cos 40o= - max.
     

Note 1:  In this case, I have assumed that your friend's force will not
overcome that of friction and the direction of the sled's acceleration will still be
negative (i.e., to the left).  As such, I have unembedded the negative sign in front
of the ma term.  If I am wrong, the SIGN of the calculated acceleration will be
negative.  Continuing:

  - µ kN + F cos 40o= - max

     ⇒  - (.04)(255 nt) + (60 nt)(.766) = - (30 kg) a
         ⇒                a = -1.19 m/s2.

Note 2:  The negative sign means that I've assumed the wrong direction for
a.  Evidently, your friend's force was greater than the frictional force and the
acceleration was really in the +x direction (if this ever happens to you, what I've
just said is all you will have to state to make the problem OK).

5.31)
a.)  A stationary elevator will feel no friction; the f.b.d. for the situation

is shown in the sketch to the right.  Using N.S.L.:

  
∑ Fy :

T - mg = ma
 = 0          (as elevator's acc. ae = 0)

     
     ⇒   T= mg

             = (400 kg)(9.8m/s2)
    = 3920 nts.

b.)  With the upward acceleration of the elevator, the frictional force
will be applied downward as shown in the f.b.d. to the right.  The
acceleration term a is a magnitude whose sign (manually placed)
is positive.  N.S.L. yields:

  
∑ Fy :

        T - mg - fk = +ma
     ⇒     T= mg + fk + ma
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               = (400 kg)(9.8m/s2)+(80 nt)+(400 kg)(2.8 m/s2)
      = 5120 nts.

c.)  The only difference between this problem and Part b is that the ac-
celeration is zero (constant velocity means zero acceleration).  It makes no
difference what the velocity actually is; the forces acting on the elevator are
the same as in Part b so the f.b.d. from Part b is still valid.  Using
it, we get:

  
∑ Fy :

T - mg - fk = ma
         ⇒    T= mg + fk + m(0)

             ⇒      = (400 kg)(9.8m/s2) + (80 nt)
    = 4000 nts.

d.)  With the downward velocity, friction is upward as shown in the
f.b.d. to the right.  N.S.L. yields:

  
∑ Fy :

T - mg + fk = -ma
     ⇒  T= mg - fk - ma

            = (400 kg)(9.8m/s2) - (80 nt) - (400 kg)(2.8 m/s2)
   = 2720 nts.

Note:  Whenever you can, make the acceleration term a a magnitude.  That
is what I've done above (the acceleration's negative sign has been unembedded).
Be careful when you do this, though.  Don't put a negative sign in front of the a,
then proceed to use -2.8 m/s2 when it comes time to put in the numbers.

e.)  Moving with a constant velocity means that the acceleration a is
zero.  Friction is still acting (upward in this case), so the f.b.d. used in Part
d is still valid (the forces haven't changed, there is just no acceleration).

  
∑ Fy :

T - mg + fk = -ma
          ⇒   T= mg - fk - m(0)

                        = (400 kg)(9.8m/s2) - (80 nt)
        = 3840 nts.
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5.32)  The scale in this case is measuring the net force you apply to the scale
(or the ground).  If the acceleration is upward, this force Fscale will be greater than

mg; if downward, it will be less than mg.  To determine the acceleration direction,
we need to determine mg:

mg = (60 kg)(9.8 m/s2)
      = 588 newtons.

As this is less than the scale reading of 860 newtons, the elevator must be
accelerating upward and the acceleration's sign must be positive.

By Newton's Third Law, the force you apply to the scale must be
equal and opposite the force the scale applies to you.  As such, using an
f.b.d. and N.S.L. on yourself (see to right) yields:

  
∑ Fy :

Fscale - mg = ma
          ⇒    a = (Fscale/m) - g

                         = (860 nt)/(60 kg) - (9.8m/s2)
         = 4.53 m/s2.

Note:  If we had assumed a downward acceleration (i.e., an acceleration
that was negative), we would have gotten a negative sign in front of the calculated
a term above.  The negative sign in an answer like that does not identify direction.
By unembedding the sign, we have made the acceleration term a magnitude.  As
such, it should be positive.  The negative sign in front of an answer in such
instances means we have assumed the wrong direction for the acceleration,
nothing else!

5.33)
a.)  An f.b.d. for the forces on the mass is shown to

the right.  Noting that the acceleration is to the right, I
have put one coordinate axis along the horizontal.
N.S.L. in the x direction yields:

  ∑ Fx :

T sin θ  = ma
          ⇒    a = (T sin θ )/m      (Equation A).
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We need to determine T to solve this.  Using N.S.L. in the y direction
yields:

  
∑ Fy :

T cos θ  - mg = may
= 0     (as ay = 0)

               ⇒   T = mg/(cos θ ).

Re-writing, then substituting back into Equation A yields:

  a = [T] (sin θ )/m
      = [mg/(cos θ )] (sin θ )/m.

The m's cancel and (sin θ )/(cos θ ) is tan θ , so we end up with

a = g tan θ .

For our problem, the numbers yield:

a = (9.8 m/s2)(tan 26o)
   = 4.78 m/s2.

b.)  At constant velocity, there is no acceleration and, hence, no swing
observed.  The string and mass should hang completely vertical.  Note:
That is exactly what the equation in the x direction suggests.  The only time
the acceleration will equal zero in T sin θ  = ma is when θ  = 0.

Note:  One intrepid student whose father was a pilot pointed out that
airplane floors (and ceilings) are not horizontal (she observed that when she
walks to the bathroom at the rear of a plane, she always walks down hill).
In any case, that idiosyncracy isn't important here as
the angle is measured relative to the vertical.

5.34)
a.)  We are interested in finding the coefficient of

static friction between both m1 and m2 (call this µ s,1)
and between m2 and the wall (call this µ s,2), when F =

25 newtons.
--To the right is the f.b.d. for m1.  N.S.L. yields:
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  ∑ Fx :

 F - N1 = m1ax
 = 0   (as ax = 0)

             ⇒     N1 = F   (equal to 25 nts).

  
∑ Fy :

 µ s,1N1 - m1g = m1a1
  = 0        (as a1 = 0).

     ⇒     µ s,1 = (m1g)/ N1
              = [(2 kg)(9.8 m/s2)] / (25 nt)

            = .784        (note that the coefficient is unitless).

--The f.b.d. for m2 is shown to the right.  A
number of observations need to be made before
dealing with N.S.L.:

i.)  Look at m1's f.b.d. on the previous
page.  Notice that it experiences a normal
force N1 due to its being jammed up against
m2.  As such, m2 must feel a reaction force

(Newton's Third Law) of the same
magnitude (i.e., N1) in the opposite

direction.  That force has been placed on
m2's f.b.d.

ii.)  Look again at m1's f.b.d. on the previous page.  Notice that it
experiences a frictional force fs,1 due to its rubbing up against m2.  As
such, m2 must feel a reaction force of magnitude fs,1 in the direction
opposite that of the frictional force on m1.  That force has been placed
on m2's f.b.d.

iii.)  Having made those observations, N.S.L. yields:

  ∑ Fx :

 N1 - N2 = m2ax
    = 0   (as ax = 0)

                     ⇒     N1 = N2  (equal to F = 25 nts as N1 = F) .
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∑ Fy :

 µ s,2N2 - µ s,1N1 - m2g = m2a2
    = 0   (as a2 = 0)

         ⇒    µ s,2 = [ µ s,1N1 + m2g ] / N2
    = [(.784)(25 nt) + (7 kg)(9.8 m/s2)] / (25 nt)
    = 3.528.

b.)  The force F is now 20 newtons.  That means there is not enough
force associated with F to keep the bodies pinned to the wall.  That being
the case, they begin to accelerate downward.  Assume the coefficients of
kinetic friction are µ k,1 = .15 and µ k,2 = .9 respectively.

As innocuous as this scenario may seem, the problem has the potential
to be a real stinker.  Why?  Because the direction of a frictional force on a
body depends upon the direction of its slide relative to the other body.  We
don't know the acceleration of each of the bodies.  We do know that if m2
accelerates downward faster than m1, then m1's motion relative to m2 will
be upward and the frictional force on m1 will be downward.  If m2
accelerates downward more slowly than m1, then m1's motion relative to m2
will be downward and the frictional force on m1 will be upward.   Not
knowing the acceleration of either body means we don't know which body
will be moving faster and, hence, what direction
the frictional force will be on either object.  In
short, we have to do the problem both ways to see
which ends up making sense.

We will start by assuming m1 accelerates
faster than m2.  In that case, the frictional force
on m1 will be upward and the f.b.d. for the situ-
ation will be as shown to the right.  Using N.S.L.
on m1, we get:

  ∑ Fx :

 F - N1 = m1ax
 = 0   (as ax = 0)

             ⇒           F = N1     (equal to 20 nt).

  
∑ Fy :

       µ k,1N1 - m1g = -m1a1.
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     ⇒    a1 = [- µ k,1N1 + m1g]/m1
         = [-(.15)(20 nt) + (2 kg)(9.8 m/s2)] / (2 kg)

       = 8.3 m/s2.

--The f.b.d. for the forces acting on m2 are
shown on the next page.  N.S.L. yields:

  ∑ Fx :

 N1 - N2 = m2ax
   = 0   (as ax = 0)

   ⇒     N1 = N2  (equal to F = 20 nts).

  
∑ Fy :

 µ k,2N2 - µ k,1N1 - m2g = -m2a2
   ⇒    a2 = [- µ k,2N2 + µ k,1N1 + m2g] / m2

     = [-(.9)(20 nt) + (.15 kg)(20 nt) + (7 kg)(9.8 m/s2)] / (7 kg)
     = 7.66 m/s2.

Note 1:  Yes!  We've lucked out.  We assumed m1 accelerates faster than
m2, and that is just what our calculations have verified.  If we had been wrong, we
would have gotten senseless results.  As we got it right on
the first try, we needn't go further.

Note 2:  For the amusement of it, let's go further.
That is, assume that m1 accelerates more slowly than m2.
That means m1 will slide upward relative to m2 and the
frictional force will be downward (this is exactly opposite
the situation we outlined above).  With the direction of the
frictional force reversed, the f.b.d. on m1 look as shown to
the right.  N.S.L. yields:

  ∑ Fx :

 F - N1 = m1ax
 = 0   (as ax = 0)

             ⇒          F = N1     (= 20 nts).
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∑ Fy :

 - µ k,1N1 - m1g = -m1a1.
        ⇒     a1 = [ µ k,1N1 + m1g]/m1

             = [(.15)(20 nt) + (2 kg)(9.8 m/s2)] / (2 kg)
           = 11.3 m/s2.

Yikes!  According to our calculations, block m1 is accelerating faster than

the acceleration of gravity (g = 9.8 m/s2).  That isn't possible in this situation.
Conclusion?  We made bad assumptions about the acceleration of m1 and m2.

c.)  The reason the accelerations are different?  They have different
forces acting on them!

   

5.35)
a.)  The free body

diagrams for this situation
are shown to the right.

b.)  We need the
frictional forces in both
cases, which means we
need both N1 and N2.
Using N.S.L. in the y
direction:

       
  
∑ Fy :

 N1 - m1g cos θ  = m1ay
        ⇒    N1 = m1g cos θ        (as ay = 0).

Likewise, N2 = m2gcos θ  .

--Using N.S.L. for the x-motion of m1, noting that the acceleration is in
the negative direction, relative to our coordinate axis (the body is slowing,
hence the acceleration is opposite the direction of the velocity):

  ∑ Fx :

     T - µ kN1 - m1g sin θ  = -m1a.
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Substituting in for N1 and solving for m1a, we get:

 m1a = [-T + µ k(m1g cos θ ) + m1g sin θ]         (Equation A).

--To get rid of the tension term, consider the x motion of m2:

  ∑ Fx :

     -T - µ kN2 - m2g sin θ  = -m2a.

Substituting in for N2 and solving for the tension T, we get:

   T = - µ k(m2g cos θ ) - m2g sin θ  + m2a.

Substituting the tension term into Equation A yields:

      m1a = [-(-µ k(m2g cos θ  ) - m2g sin θ+ m2a) + µ k(m1g cos θ ) + m1g sin θ].

Solving for the acceleration yields:

        a = [µ k(m2g cos θ  ) + m2g sin θ  + µ k(m1g cos θ ) + m1g sin θ]/(m1 + m2)
 = µ kg cos θ  + g sin θ .

c.)  Plugging the expression for a back into Equation A allows us to
determine T.  I'll save space by leaving the exercise to you.

5.36)  This is an important situation
because it requires you to face all the pitfalls
that can occur when doing incline-plane
problems.

We know m1 is moving down the incline.
That means m2 is moving upward.
Unfortunately, we have not been told the
direction of acceleration for either m1 or m2.  For the sake of amusement, let's
assume m1's acceleration is up the incline (i.e., it's slowing).  That will make m2's
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Remembering that the magnitude of m1's

acceleration is numerically equal to a2 cosθ  (this
was pointed out in the original set-up), now
consider m1's f.b.d.  N.S.L. yields:

  ∑ Fx :

T cos φ   + µ kN - m1g sin θ  = m1a1
  ⇒     T cos φ   + µ kN - m1g sin θ  = m1(a2cos θ )            (Equation 2).

At this point, we have three unknowns N, a, and T.  To determine an
expression for N, consider N.S.L. in the y direction for m1.  Doing so yields:

  
∑ Fy :

T sin φ   + N - m1g cos θ  = m1ay = 0            (as  ay = 0)
          ⇒    N = -T sin φ  + m1g cos θ                   (Equation 3)

--Note that although the problem did not ask you to do so, solving for a2 is done in
the following manner.

Plugging Equation 1 into Equation 3 yields:

N = -(m2g - m2a2) sin φ   + m1g cos θ                 (Equation 4)

Plugging Equation 1 and Equation 4 into Equation 2 yields:

         T            cos φ   + µ k                           N                            - m1g sin θ  = m1(a2cos φ)
(m2g - m2a2 ) cos φ  + µ k[-(m2g - m2a2) sin φ  + m1g cos θ - m1g sin θ= m1(a2cos φ)



726

m  g

T

v

2

N

m  g

T

center 
  seeking
  direction

y

1

side view

Rearranging and solving for a2 yields:

  
a2 =

m2g cos φ − µ km2g sin φ + µ km1g cosθ − m1g sin θ

m1 cos φ + m2 cos φ − µ km2 sin φ
 .

Interesting Note:  There are positive and negative parts of the
denominator, but it's OK because the two amounts will never add to zero.

5.37)  This is a circular motion
problem.  There must be a natural force
somewhere in the system that acts to
change the direction of m1's motion.
That is, there must be a gravitational or
normal or tension or friction or push-me-
pull-you force that is center-seeking.  In
this case, that force provided by the sys-
tem is the tension in the string.  The

problem proceeds:
Using N.S.L. on mass m1 (see f.b.d. to right):

  ∑ Fc :

-T = -m1ac
    ⇒   T = m1 (v2/R)

           ⇒   v = (TR/m1)1/2.

This equation has two unknowns, v and T.  To get rid of the
tension term, consider N.S.L. applied to mass m2 (see f.b.d. to right):

  ∑ Fv :

T - m2g = 0         (as ay = 0)
     ⇒   T = m2g.

Substituting back into our expression for v, we get:

 v = [TR/m1]1/2

      = [(m2g)R/m1]1/2.
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This is a nice problem as it requires you to deal with more than one body.
The approach is the same as it has always been.  Do an f.b.d. for one body in the
system.  In this case, notice that the body is moving in a circular path.  As such,
orient one axis so that it is center-seeking (i.e., along the radius of the arc upon
which the bob is moving).  Use N.S.L. to generate as many equations as needed.  If
you haven't enough equations to solve for the desired unknown, pick a second
mass and repeat the approach.

5.38)  An f.b.d. for the forces acting on the cart
when at the top of the loop is shown to the right.  N.S.L.
yields:

  ∑ Fc :

-N - mg = -m ac
        = -m (v2/R)
⇒   v = [(N + mg)R/m]1/2.

When the cart just freefalls through the top of the arc, the normal force goes to
zero.  In that case:

        v = [gR]1/2.

5.39)
a.)  To begin with, the tension vector must

have a vertical component (see f.b.d. to the right).
If it doesn't, there will be nothing to counteract
gravity and the rock must accelerate downward--
something our object is not doing.  As such, that
vertical force will ALWAYS equal mg.  BUT, if the
rock is moving fast, the angle will be small and the
vertical component will be very small in comparison to T.  In that case, we
can assume the tension force T is wholly centripetal and r = L.  Using those
assumptions:

    ∑ Fc :

T = m ac
         = m (v2/L)

 ⇒   v = [TL/m]1/2.
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Putting in the numbers and using Tmax, this yields:

v = [TL/m]1/2

      = [(50 nt)(1.2 m)/(.2 kg)]1/2

      = 17.32 m/s.

b)  Because there is centripetal motion
going on here, the temptation is to draw an
f.b.d. like the one shown to the right and then
sum the forces in the center-seeking direction.
Noting that the radius r of the body's motion is
L cos θ , we write:

       ∑ Fc :

T cos θ  = m ac
  = m [v2/r]
  = m [v2/(L cos θ )]

     ⇒   (cos θ )2= [mv2/LT].

This equation would be great if we knew the velocity and wanted the
angle (or vice versa).  Unfortunately, we know neither.  In other words, for
this particular question, summing in the center-seeking direction is going to
be no help at all (at least not initially).  With that in mind, let's use N.S.L.
in the vertical direction and pray it gives us an equation we can use.

  ∑ Fv :

T sin θ  - mg = 0      (as ay = 0)
     ⇒   sin θ  = mg / Tmax

          = (.2 kg)(9.8 m/s2) / (50 nt)
           = .039

     ⇒   θ  = 2.247o.

c.)  We now know the angle that corresponds to the velocity at which
the string will give up and break.  With that information we can use N.S.L.
in the center-seeking direction to bring the velocity term into play (that
equation was derived above--it is re-derived below for your convenience).
Doing so yields: 
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       ∑ Fc :

 T cos θ  = m ac
           = m [v2/(L cos θ )]

     ⇒  v = [LT(cos θ )2/m]1/2

   = [(1.2 m) (50 nt) (cos 2.247o)2 / (.2 kg)]1/2

   = 17.3 m/s.

Notice how close this is to the solution determined in Part a.  The rea-
son for this should be obvious.  The string-breaking velocity is high which
means the string-breaking angle is small.  Being so, the vertical tension
component (this must equal mg) will be small in comparison to the overall
tension T and the horizontal tension component will very nearly equal T.
The assumption we made in Part a was that the tension was all in the
center-seeking (horizontal) direction--in this case, that wasn't a bad
assumption to make.

d.)  For this part, we must incorporate the velocity into our analysis (we
didn't do that when we were looking for the angle in Part b; you should
understand the difference between these two situations).  Using the f.b.d.
shown in Part b-i, we can use N.S.L. to write:

  ∑ Fc :

 T cos θ  = m ac
        = m [v2/(L cos θ )]
⇒   v = [TL(cos θ )2/m]1/2      (Equation A).

In this case, we don't know T.  Looking at the vertical forces yields:

  ∑ Fv :

T sin θ  - mg = 0      (as ay = 0)
⇒   T = mg/sin θ .

Substituting T into Equation A:

  v = [T(cos θ )2L/m]1/2

    = [(mg/sin θ ) (cos θ )2L/m]1/2

    = [(g/sin θ ) (cos θ )2L]1/2

    = [g (cot θ ) (cos θ )L]1/2.
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NOTE:  If you don't like the use of the cotangent function (cos/sin), forget it
and simply use the sine and cosine terms as presented.

Putting in the numbers, we get:

v = [(9.8 m/s2)(cot 30o)(cos 30o)(1.2 m)]1/2

   = 4.2 m/s.
5.40)

a.)  The gravitational force between you and the earth, using Newton's
general gravitational expression, is:

Fg = G myoume/r2

     = (6.67x10-11 m3/kg.s2) (70 kg) (5.98x1024 kg) / (6.37x106 m)2

     = 688 nts.

Using myoug:

Fg = myoug

     = (70 kg) (9.8 m/s2)
     = 686 nts.

The discrepancy is due to round-off error.

Note:  The reason we can get away with using mg when near the earth's
surface is due to the fact that the earth's radius is so large.  That is, it really
doesn't matter whether you are on the earth's surface or 200 meters above the
earth's surface.  For all intents and purposes, the distance between you and the
center of the earth is going to be, to a very good approximation,
the same.

b.)  Let's begin by determining the amount of normal
force (Nw/o c.f.) the earth must apply to you when you stand

at the poles.  The f.b.d. for the situation is shown to the
right.  Noting that there is no centripetal acceleration at the
poles (at the poles the rotational speed of the earth is zero),
ay is zero and N.S.L. yields:

  
∑ Fy :

      Nw/o c.f. - mgw/o c.f. = 0       (as ay = 0)
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      ⇒    Nw/o c.f.
 = mgw/o c.f.

           = (70 kg)(9.83 m/s2)
           = 688.1 newtons.

  Note that at the equator, the earth's rotational speed is equal to the
distance a point on the equator travels in one day (i.e., the circumference =
2R = (2)(3.14)(6.37x106 m) = 4x107 m) divided by the time it takes to do the
traveling (i.e., 24 hours = 86,400 seconds), or:

veq = d / t

      = (4x107 m ) / (86,400 sec)
      = 463.2 m/s (this is around 1000 mph).

Let's now determine the amount
of normal force (Nw c.f.) the earth
must apply to you when you stand at
the equator.  The f.b.d. for the
situation is shown to the right.
Noting that as there is centripetal
acceleration at the equator (at the
equator there is rotational speed in the amount calculated above), ay is non-
zero and N.S.L. yields:

  ∑ Fc :

          Nw c.f. - mgw/o c.f.  = -mac
         = -m(v2/R)

                    ⇒     Nw c.f. = mgw/o c.f. - m(v2/R).

Put in a different context, the normal force required at the equator will
be equal to the normal force required without centripetal force (remember,
Nw/o c.f.

 = mgw/o c.f. from above) minus the centripetal force (this will

numerically equal mv2/R) required to move you into circular motion.
Putting in the numbers yields:

 

Nw c.f. = mgw/o c.f. - m(v2/R)

= (688.1 nts) - (70 kg)[(463.2 m/s)2/(6.37x106 m)
= 685.7 nts.

If we wanted to define a gravitational constant gequ that, when
multiplied by your mass gives the amount of force the earth must exert on
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you when you stand at the equator (that is exactly how the g value you have
come to know and love was originally determined), gequ will be:

Nw c.f. = mgw c.f.
    ⇒     gw c.f  = Nw c.f./m

          = (685.7 nts) / (70 kg)
          = 9.796 m/s2.

c.)  Defining the distance between the earth and moon to be r and using
N.S.L., we get:

  ∑ Fc :

       -G memm/r2 = -mm ac
             = -mm v2/r

      ⇒    v = (Gme/r)1/2 (Equ. A)

      = [(6.67x10-11 m3/kg.s2) (5.98x1024 kg) / (3.84x108 m)]1/2

      = 1019 m/s.

Interesting Note:  Just as two objects will accelerate at the same rate
(assuming neither gets close to its terminal velocity) under the influence of
gravity, the velocity required to pull a mass in a given-radius circular path does
NOT depend upon the mass of the object being so motivated.  This might not be
immediately obvious (just as the first statement in this NOTE wasn't obvious back
when you first ran into it), but it is supported by the math.  The moon is the mass
being centripetally accelerated, and the mm terms do cancel out in our velocity
equation as derived above.


